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HEATING AT THE ELECTRON CYCLOTRON FREQUENCY
IN THE ISXoB TOKAMAK

Plasma heating by microwaves at the electron cyclotron resonance

frequency has been demonstrated to be an effective technique in a variety

of confinement devices.1 -3 The recent development of the gyrotron 4 as a

high power, short wavelength microwave source has made it possible to

perform electron cyclotron heating experiments in tokamaks. 5 Numerous

advantages are evident in this method of heating tokamak plasma. As

depicted in Fig. 1, the microwave energy can be deposited in a thin

resonant layer which exists at the major radius (R) where the electron

cyclotron frequency (fc) is equal to the microwave source frequency (fg).

The microwave absorption coefficient increases with 
electron temperature6

Tel making this an attractive scheme for supplemental heating. The wave

damping mechanism is linear and heats the bulk of the electrons, rather than

producing a high energy tail. Antenna structures are small compared with

those required for heating at the ion cyclotron or lower hybrid frequencies,

since ECH wavelengths are less than 1 cm for most tokamaks.

There exist several theories 7-11 of ECH in tokamaks which predict that

the extraordinary wave is more heavily damped than the ordinary wave at

oblique incidence from the high field side. For the parameters of the ISX-B

tokamak (major radius Ro = 93 cm, minor radius a = 27 cm, Te = I keV), ion o

7 03
theory predicts 100% single pass absorption of the extraordinary wave, while -
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the ordinary wave can undergo about 50% single pass absorption, depending

upon the angle of incidence and the electron density.

Previous experiments by Alikaev et al.5 used short (750 ps) microwave

pulses at power levels of less than 60 kW to perform bulk heating in the

TM-3 tokamak (Ro = 40 cm, a = 8 cm). The energy confinement time, TE, in

this device was about 300 lis with a plasma current of 60 kA. Because of

the small plasma volume and low electron temperature (400 eV) in TM-3,

significant single pass absorption could not occur.7 Since the unpolarized

microwaves were launched from the low field side of the tokamak, the extra-

ordinary wave component encountered a cutoff and could not propagate

directly to the cyclotron resonance.

Here we present the results of ECH experiments in which the larger size

of the tokamak and higher electron temperature (-1 keV) assure high single

pass microwave absorption. The energy confinement time (TE = 10-15 ms) and

ohmic heating power Cl00-150 kW) in ISX-B are roughly comparable to the NRL

gyrotron 12 pulse length C10-20 ms) and output power (100-140 kW). Thus,

these experiments provide a significant scaling of the previous ECH research.

The NRL gyrotron oscillator operated at a frequency (fg = 35.08 GHz)

which corresponds to a resonant field of 12.5 kG with cutoff densities of
13

1.5 x 10 cm"3 for the ordinary wave and 3 x l0 3 cm"3 for the extraordinary

wave. Microwave output was in the TE01 circular mode, which was transmitted

to the tokamak with overmoded copper waveguide (6 cm i.d.). Transmission

losses between the gyrotron and the tokamak were about 1 dB. As shown in

Fig. 1, the microwave power was launched into the plasma from the midplane

of the high field side of the tokamak, eliminating the cutoff of the

extraordinary wave that occurs on the low field side. The incident angle
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was set at 450 from a major radius at the plasma edge. Ray tracing cal-

culations 7 in toroidal geometry predict that this angle of incidence results

in almost 100% single pass absorption of the extraordinary wave and less

than 60% single pass absorption of the ordinary wave. Since the radiated

power was an equal mixture of ordinary and extraordinary waves one expects

a single pass heating efficiency of less than 75%. Of the radiation which

is not absorbed in a single pass only a small fraction is reflected

directly back to the center of the plasma because of both the extraordinary

wave cutoff and the divergence of the microwave beam (+17 0).

Several electron temperature diagnostics were located about 1800 around

the torus from the antenna. A laser Thomson scattering system had the

capability of 4 pulses per tokamak shot with pulse separations as small as

1 ms, enabling the time evolution of Te to be measured during the heating

pulse. Detection of the black-body emission at the second cyclotron

harmonic provided a continuous measurement of the electron temperature.

This diagnostic utilized a standard superheterodyne receiver, with a local

oscillator frequency of 70.5 GHz, and I.F. amplifier with 60 MHz bandwidth.

Detuning the local oscillator from the second harmonic of the gyrotron

frequency eliminated the enhanced second harmonic generation that was

observed at exactly 2 f . A similar superheterodyne receiver with a local

oscillator frequency of 58 GHz measured the electron temperature at a major

radius R = 112 cm, as illustrated by the region in Fig. I where fc = 29 GHz.

A comparison is given in Figs. 2(a) and 2(b) of the electron temperature

and density profiles before and after electron cyclotron resonance heating.

These results were obtained with -80 kW of microwave power applied for

10 ms, with the resonant magnetic field located at the center of the plasma.
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Peak electron density was slightly above the cutoff density for the

ordinary wave but below the extraordinary wave cutoff density. The central

electron temperature increased from 850 eV to 1250 eV, becoming more

peaked at the center, as expected. This temperature increase is verified

by the increase in the second harmonic cyclotron emission. Assuming 100%

microwave absorption with a gaussian energy deposition profile centered at

the resonant surface, a transport code predicts this temperature increase

for an empirical electron heat conduction coefficient that is independent

of Te. For a microwave input power of 80 kW the heating efficiency is

estimated to be about 60% from a power balance equation that includes:

(i) the change in plasma electron energy (from 766 J to 850 J) divided by

the ECH pulse length (10 ms), (ii) the decrease in ohmic heating power

(30 kW), and (iii) the change in electron energy divided by the electron

energy confinement time (9.1 ms). During the microwave pulse, the central

electron density is seen to decrease by about 15%. This large density

decrease was usually observed during the microwave pulse in these experi-

ments. No hard x-rays were generated by the ECH, and the soft x-ray

spectrum did not exhibit a high energy tail, confirming that the bulk of

the electrons were heated.

The temporal evolution of the electron density, loop voltage, and central

electron temperature are shown in Fig. 3(a) for 80 kW microwave injection

with 16 ms ECH pulse duration. Electron temperature at the center of the

plasma [Fig. 3(b)] increased from 850 eV to approximately 1300 eV with

fairly close agreement between the Thomson scattering and second cyclotron

harmonic detection (SHD) diagnostics. An empirical transport code yields

a temperature rise and decay that closely resembles the SHD diagnostic.
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Loop voltage decreased during the ECH pulse from approximately 1.1 V to

0.66 V, which, from the Spitzer resistivity, indicates an electron temperature

increase of about 40%. Both the horizontal and vertical line-average

densities decreased by approximately 15% during the heating pulse. A

density decrease has also been observed in neutral beam heated plasmas in

ISX-B. The experimental density decrease is anomalously large with ECH,

since empirical transport code calculations predict only a 2% decrease in

line-average density. This explains why the experimental SHD electron

temperatures are slightly higher than the theoretical values in Fig. 3(b).

In order to determine whether the electron cyclotron heating is linear,

the gyrotron power was varied. These results, shown in Fig. 4, indicate a

linear dependence of Te on microwave power with a heating rate of -6 eV per

kilowatt. The agreement between the Thomson scattering data and the second

cyclotron harmonic detection data is evidence that nonthermal electrons are

not produced by ECH. This is the first time that a linear heating rate

has been demonstrated for heating at the electron cyclotron frequency in a

tokamak.

No ion heating was observed in these ECH experiments. One does not

expect ion heating since the low plasma density provides weak coupling

between electrons and ions; the microwave pulse lengths (10-16 ms) and

energy confinement time (10 ms) are much shorter than the electron-ion

equilibration time (-50 ms). However, as tokamaks are scaled toward reactor

parameters and gyrotrons with higher frequencies and longer pulses are

developed, significant ion heating could occur. Results of the present

experiments indicate that ECH may prove to be an important supplementary

technique for heating CTR plasmas toward ignition temperature.
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Fig. 1 - Experimental configuration. The electron cyclotron
frequency (fc) is shown for a toroidal magnetic field (BT) of
12.5 kG on axis. The ECH resonant surface (fc 35 GHz)
is located at the center of the plasma.
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Fig. 2 - Electron temperature profile (a) and density profile (b) measured
by Thomson scattering. Dashed lines denote data taken before ECH (118
ms into tokamak shot); solid lines represent data at the end of ECH (at 130
ms). Data is for 80-kW microwave injection with a 10-ms ECH pulse starting
at 120 ms. BT was 12.5 kG, line-average electron density (T e) was -1013
cm- 3 , and plasma current (Ip) was 83 kA.
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Fig. 3 - (a) Central electron temperature (from second harmonic
cyclotron emission), loop voltage (Vq), and line-average electron
density vs time for 80-kW microwave pulse of 16-ms duration.
(b) Electron temperature measurements from second cyclotron
harmonic detection are indicated by a solid line, Thomson scatter-
ing measurements by circles, and electron temperature calculated
from empirical transport code is shown by dashed line. Plasma
parameters were: BT 2! 12.5 kG,We -- 1013 cm- 3 , and Ip =

115 kA.
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Fig. 4 - Central electron temperature vs microwave power with
15 ms ECH pulse length. Electron temperature measured by
Thomson scattering ((b) and second harmonic cyclotron emission
(A). Plasma parameters were: BT -5 12.5 kG, ne a 1013 cm - 3 ,

and Ip = 85 kA.
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